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The asymptotic behavior of problem of flow of a viscous incompressible fluid past a 
curved obstacle is investigated in boundary layer approximations. 

Conditions under which the solution of this problem reduces to the Blasius solution 
dealing with a flow past a plate, are explained. 

Let us direct the t-axis along the boundary of the obstacle and the y-axis along the 
normal. We introduce the following notation: u and v are the velocity components 
along the t- and y-axes, respectively ; U (I) is the longi~dinal velocity component 
of the external flow ; v i: the viscosity factor. We assume that the density p = 4. The 
set of Prandtl equations in domain P {0 < x < 00. 0 < Y < ~1 and the corresponding 

boundary conditions expressed in our notation, are of the form 

au au 
uxfvay- dub) v$&u(x)-p -g++o (1) 

qy_*= 0, q”=o = 0, qcmfJ = uo (Y), ;5u (XI Y) = u ($1 l-4 

where the limit exists and is &rite for any value of x, I E lo, ~1. The function U (4 
is related to pressure p (t) by Bernoulli law 

2p (2) -+ Ua (t) = C = const 

We shall assume that there exists a solution IL, Y of the set (1) under the conditions 

(2) in domain P, and that the component u fx, y) has the following properties: when 

II > o , u (2,~) > o, and u f t, v) is continuous and bounded in domain P {O 6 x < cc, 

0 < I/ < Ml- 
The relevant theorem on the existence of a solution for problem (l), (2) was proved 

in p] with the assumption that the initial profile uo (y) and the function U (z) are fairly 

smooth, and u. (y) > 0 for Y > 0, ug’ (0) > 0, 

uo (0) = 0, “0 (-) = U (O), dp I dz 0 0 

In p], the behavior of velocity component u (z, y) in the boundary layer (l), (2) in 
the case of (dp I dz < 0) was studied for 2 -+ 33. It was shown that the influence of the 

initial profile of ~0 f.rf) is small for large T , and that the difference of solutions corre- 

sponding to different profiles of uo ($3 tends to zero along the lines of flow for z 4 0~. 
The author of f3] proves that this difference also tends to zero in the physical plane 

of variables z and y. In the above mentioned papers it’is stated that the velocity pro- 
files u1 (2, u) and u2 (x, y), which correspond to different initial functions u.01 (y) (i=i, 2), 
are formed by the action of the same external flow U (t). In the present paper we com- 
pare, for large values of I. the velocities ~1 (2, y) and us (I, u) which correspond not 
only to different initial functions uot (v) but also to different components U, (2) 
(i = 1, 2) of the external flow, in the case when 

lim Ui (5) = ZT, = con& (f =i, 2) 
X-+C0 
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It h proved that if lim 1 u1 (E) - Cl2 (z) 1 =,‘%I 140~ (y) - uu2 (I) 1 = 0 
CC- 

then, for I -, bo , the difference between components IG (t, Y) and u* (2, v) tends uniformly 
to zero with respect to Y, where ~~10, w). One particular consequence is that thevelocity 
profile Y (z, Y) which is formed in boundary layer (1). (2) when t is large, converges 

asymptotically to the well-known Blasius solution [4] 

u1= V,/’ (tl), 1)= l/Q1/2v(~+U 

which corresponds to the flow past a plate, in the longitudinal direction at the velocity 

U (Z) E (I,. let us note that the flow function f (q) , appearing in Blasius solution, is the 

solution of the boundary value problem 

11” + I” = 0, f (0) = 0, f’ (0) = 0, f’ (00) = 1 (3) 

and represents the monotonically increasing function together with its first derivative. 

The estimates characterizing the order of mutual convergence of corresponding solu- 
tions, are also obtained. 

Theorem. Let the following inequalities be fulfilled: 

0 < uo (v) f u (O), uo’ (0) > 0, uo (0) = 0 (4) 

0 Q dU I dx < MO@ + i)““, yo.> 0 (5) 

In this case, if 5 tends to infinity uniformly with respect to Y, Y E IO, cc), the differ- 

ence 1 u (I, v) - u1 (G 14 I -, 0. where u, (2, d = U, f’ (q), the f (q) is the solution 
of the boundary value problem (3). 

If supplementary inequalities 

u (0) 1’ (Y - N) B uo (Y) YEV, =) (6) 

I uo (Y) - u (0) I < Ml axP {- VYV YEIO,W) (7) 

are satisfied for some constants N, M1, and y1 > 0, the following estimate holds : 

I u (G VI - Ul b, id I d M / (z + v (81 

where M and 0 < y < r. are some constants dependent only on the initial data of the 
problem. 

Pro o f. In Mises’ variables 

I = 2, $=W.YJ=~W,Y)dY (9) 
0 

the Prandtl system with respect to the function o = us (t, cp) in domain Q (0 < t < 00, 
0 < 9 < co) reduces to the equation 

80 Bo 
VC+--~= - 20 (z’) dU/dt (10) 

and conditions (2) are transformed into the form 

w(*=o=o. ~~x_o=oo(~)# Em_o(2,9)=(1*(1) 
(11) 

Let us consider the function 

or (=,$) = err’ (2. W = [U (2) - 61* [f’ (W, tl= ~K(Y --NJ/ V-j 

N>O, +dg 
y= s, 

0 
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LetI3 satisfy the condition 0 < 6 < V (0). 
As N increases, the function f’ (q) decreases and 

~~or(o,rp)=[cI(o)-~]‘<u’(o)=Jt~oo(~) 

so that, by virtue of inequalities (4). for N being fairly large and for all qP>N , the fol- 

lowing inequality is fulfilled : 
oa (0, $9 6 00 (9) (12) 

To simplify further discussion let us first assume that N = 0 and prove that everywhere 

in domain Q or (J, 9) < 0 (a+ 9) (13) 

The difference z = o - wa satisfies the equation 

Since 

(f’(11)16f,~l-~z,,O, a* T< 0, then Fo(.t, 9) 60, 

it may be concluded that inequality s > 0 is valid in domain Q . Indeed, let us assume 

the opposite, i.e. that z (20, $0) < 0 at some point (to, upo) E Q. The function z (t, $) > 
> 0 at the boundary I’ {.z = 0, $ = 0) of domain Q and 

h&rZ(~.9)==2U(Z) 6--lY>o 

Hence, the negative minimum of function z (z, 9) is reached within domain 

Qr (0 < z < to, 0 < 9 < oo) at some point (zr, Ip,) . At this point 

We have, therefore, L (z) > 0. On the other hand, L (z) = F. (2, $) < 0. Thus, our 
assumption has led us to a contradiction. Therefore, inequality (13) must be fulfilled 

everywhere in domain Q . Let 
Ul (zt *,) = h h) 

Lemma 1. The estimate 

! u (I, $) - u1 (z, 9) ) < Ma / (2 + 1)” + 82 (1’0 

is valid in domain Q ; in (14) Mz, and 0 < ya < p. are some constants. and es > 0 is 
arbitrarily small. 

Proof. Difference u = o - o1 -j- c where c = c (t) = iJma - Us (E) satisfies 

the equation a9 PO1 
L’(0) EV IG ~-~+v~ 

ah1 
JG-J,‘G =v7 

c (4 
alp JG+ vii; 

Let us consider an ancillary function 

w (5, $) = u (5, I#) - p (t, cp) + Ed, p (5, (I) = M exp (-- a0 (3] 1 (t -I- f)’ 

For an arbitrary fixed Ed > 0 , we shall choose the constants M, y > 0, a > 0, and 

the function 0 (11) in such a manner as to make W (2, 9,) not negative at the boundary 
I’ of domainQ , and to satisfy the following inequality everywhere in domain Q : 
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By means of a similar argument as when proving inequality (13). we obtain that 
W (2, $1 < 0 in domain Q. For the second term in (15) we have 

Here k (1)) is an arbitrary function satisfying the condition 

k 01) > 6 for tl > 6, 6 e k (rl) G ‘t/al/o 

bet 6 (11) be a twice continuously differentiable function which satisfies the condition 

0; 2 0, ta 16 (1111 < - 60 II’ b-l% 60 > 0 (17) 

Such function exists for sufficiently small a. Indeed, conditions (17) at some value of 
60 are satisfied by the function 8r (q) = [“rl*h in the interval [O, r~t,l for sufffciently 

small %I0 and by the function 8s (T-I) =(f ($I]*+ CO in the interval [qo, 00) for sufficiently 

small a. 

It is obvious that this function can be constructed by simply extending function 6t (TV) 
over some interval (no, rh) , so that the function thus obtained transforms with the required 

degree of smoothness into function & (n) when VJ > qs , and satisfies conditions (17) in 

the interval @IO, qd . 

Inequality (16) becomes then 

For sufficiently small r < 
a&& (0) 

2U we have 
co 

Everywhere in domain Q ab ru1 1 

w =a ay* -T;;BO 

for sufficiently large values tl > TJS, the following estimate holds : 

I a%& “~Jfi& - I MS 
G + + l)ew {-- aOfs (W. a0 > 0 

Constants M, y and a can be therefore chosen so that 

a(~. *)-c(z)20 for rldtk 
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Fe, $I- $4 > 0 for fl<Q 
Then Lr (W > 0, and W (t, 9) ( 0 in domain Q. 
Allowing for inequality (13) we obtain 

(cont. ) 

However, for some values of constants M, a, y and Zr 

I~x(3,*i)--z(2,1pfI==IUw-U(I)+6fI’(rl)~ &r(.M)+ JG 

Thus, the estimate (14) follows directly from inequality (18). 

Let y and y, denote the corresponding physical variables of the velocity components 

u (5, I) and rl, (z, y) for a given value of 9,i.e. 

J, 
' dg 

Y= -ii-' s 
Yl,h_ 

s IL1 
0 0 

Lemma ‘2. For all values of 5, z E [O, 00) , the following inequalities hold: 

where 

YE - Yb 

U(r)--Utjco-6 

u PI 
Yl 

a (2) = 
322 

(t_ti)YZ +e** 
%a = [ 2vb-‘(72 )“I, 6 =/‘(i) 

(3) 

Inequality (19) can be proved by means of the estimate (14), in exactly the same man- 

ner as the corresponding estimate was derived in [3] Lemma 4. 

Allowing for inequalities 11 (e, IpJ >, ~ (=, ~,) ~ 

we obtain 

and this is the proof of estimate (20). 
Lemma 3. The following inequality holds in domain P : 

I UI (C Yl) - =I (2, Y) I Q M&r + 1 I”* + es (73 < 721 

Here MS > Ml is some constant, and es -+ 0 when (es, 8) -, 0 . 
By virtue of estimate (13) we have 

JI 

YfY2= += 
s 

U,Yl 
V(z)--6 

< 
UC0 

0 
u (O)__ Y'= Y* 

Making use of estimates (19) and (20), we obtain from the above 

I=r (2. .?#I - ur (G Y) I G 1% P. ?I,) 1 I ?A- Y I 6 



Asymptotic stability of the solutions of boundary layer equations 499 

Allowing in the estimate of the second term for the inequality 

I $- b:, YJ = f’ (+a tl I )( UC0 ‘Is u 
2 v(z+i) ) 6* 

which is valid by virtue of the condition Cu@ya < 0, we finally obtain estimate (21). 
Let us prove our theorem. We have 

1 u (2, Y) - Ul CL Y) I 6 I u b, Y) - If1 (2, Yl) I + lu1 (2, Yl) - Ul (t, Y) I d 
MS MS M 

yt+*)y’+ (z+i)” +e-G (zfi)Y +e (22) 

Since e, , 6 and e are arbitrary, 

lim I u (5, Y) 
x-w0 

- Ul (t, y) 1 = 0 

uniformly with respect to Y, YE [O, CX) 

If inequalities (6) and (7) are fulfilled, estimate (13) holds when d = 0 , and in deter- 

mining the function W (2, 0) we can assume that e, = 0 since a and hf were chosen to 
satisfy conditions a 6 yl, M > Ml. We have then e2 = es = e =0 in inequalities (14), 

(21) and (22). and estimate (8) follows at once. 

In the case of N # 0 inequality (13) holds only for II, > N since function oz (3, 9) is 

defined for these values only. 
The inequality (18) in Lemma 1 holds only for $ > N, whereas for J, E[O,N] the fol- 

lowing inequality is fulfilled : 

0 d rJ (=.I4 G I zJI@* w I + VP (t. $1 -I- vi, 
The estimate (14) follows directly from this inequality. 

The lower estimate in Lemma 2 is derived in the following manner. 

By virtue of the condition UO’ (0) > 0 , the following constant mo (0 < m,, < U (0)) 

exists for I = 0 : 
m+l If’ WI Ix=0 < ua (Y)* tl= )/moY/l2v(z+ i) 

Hence, on the basis of the principle of the maximum 

Then 
n (2, Y) > mo 11’ (rl)l = 2 ur (rl) 

(I 
JI 

Yl -Y> -2a (2) a, J J= d9 
mo ( 5 o w @I + = (4) > 

Having estimated integral J similarly as in Lemma 4 of [3], we finally obtain 

The proof of Lemma 3 and all further arguments are the same as in the case of N =O. 
The theorem is thus proved. 
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